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ABSTRACT 

In competing risks analysis, formulation and estimation of the net survival function is 
usually done by the traditional Latent Failure Time approach with Kaplan Meier 
Estimator. However, this approach involves identifiability problems and based on 
unverified assumptions of independent risks and equal hazard of the crude and the 

net. It has been argued that even under independent risks, the equal hazard assumption 
may not be true in many practical problems. An extended multistate approach by 
Islam (1994) is proposed in estimating the net survival function without the equal 
hazard assumption and allows for the presence of informative eliminated risks. A 
comparison of the results of the proposed procedure to that of the Kaplan Meier 
Estimator is illustrated on an adapted dataset. The proposed method shows that when 
noninformative eliminated risks are assumed, the net hazard and the crude hazard are 
equal, as in the Kaplan Meier Estimator. The proposed procedure is shown to be 

useful when informative eliminated risks are present and may result in unequal hazard 
even under independent risks. 
 
Keywords: Competing risks, informative eliminated risks, Kaplan Meier Estimator, 
Latent Failure Time approach, multistate approach, net survival function. 

 

 

INTRODUCTION 

Survival analysis is a statistical tool in analyzing an event time data. 
Survival data occurs in many areas of research such as medical, engineering 

(reliability data), demography (decrement data) and sociology 

(historical/event data) where time to occurrences of events are recorded. The 
event can be a failure of a component, death of a subject/individual, 

occurrence of a disease, recurrent of cancer etc. The occurrence of an event 

other than the event of interest is called a censoring event. The well-known 

Kaplan Meier Estimator (KME) or product limit estimator is a common 
nonparametric estimation procedure to estimate survival distribution 

function by the independent noninformative censoring assumption (Kaplan 
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and Meier (1958). However, Islam (1994) has proposed a nonparametric 
multistate approach for estimating the survival function as an alternative 

procedure, when the censoring is informative. 

 
In some studies, several causes of an event can happen and subjects 

may fail from some causes other than the causes of interest. This is called a 

competing risks situation, whereby several risks compete with each other to 
act as a cause of failure and the occurrence of a risk preclude the occurrence 

of other risks (Gooley et al. (1999)). Competing risks is an advanced 

survival tool in analyzing survival or failure time data when there are more 

than one possible causes or types of failure that react simultaneously on a 
subject within a well-defined population. Historically, earlier works have 

been done by Daniel Bernoulli in 1760 in estimating the survival rate of a 

population if smallpox was eliminated as a cause of death. This is a classical 
competing risks problem. By this approach, the theory of competing risks 

was discovered (David and Moeschberger (1978); Dietz and Heesterbeek 

(2002)). The work of competing risks and elimination studies were later 

followed by D’ Aldermbert (1761), Makeham (1874) and Farr (1875) as 
cited in Karn (1933), Dietz and Heesterbeek (2002) and Tsiatis (2005).  

Classically, competing risks has been a tool for actuarial and demography 

sciences. There were some studies on competing risks with cause-
elimination-life-table such as Cornfield (1957), Elveback (1958), Kimball 

(1969), Chiang (1968), Manton and Poss (1979) and Nour (1981). Historical 

reviews and literature of actuarial method to competing risks problem can be 
found in Seal (1977). Later, the trend was moving from classical problem to 

a modern competing risks analysis that majority has been applied in the 

other fields of study such as medical, engineering or computer sciences (Ma 

and Krings (2008)). 

 
According to Chiang (1968), the three important quantities to be 

considered in competing risks analysis are: 

 
(i) the crude probability (observable) 

(ii) the partial crude probability (unobservable)  
(iii) the net probability (unobservable) 

 

The net survival probability is generally defined as:  

 
(i) the probability of survival (from remaining risks) after a risk has been 

eliminated from the population, or 
(ii) the probability of survival if a specific risk is the only risk that reacts 

in the population.  
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In competing risks studies, it is of interest to estimate the 
nonidentifiable net survival probability in order to study the effect of one 

risk acting on a population. The estimation of the net survival probability is a 

type of “cause-elimination’ analysis, whereby all other risks other than that 
of interest, are hypothetically eliminated (Hougaard (2000)). Traditionally, 

the latent failure time (LFT) approach is used to formulate competing risks 

problem. However, this approach involves identifiability problems. Only 
with additional assumptions made on the joint distribution of the LFT, such 

as independent risks, we are able to estimate the nonidentifiable quantities in 

competing risks.  

 
However, all the assumptions being made cannot be verified or 

tested based on competing risks data, as the observable failure time, T is only 

the  minimum of the m risks latent failure time, T=min(T1,T2…Tm) (Tsiatis 
(1975); Crower (1994, 2001)). Two common assumptions by traditional 

approach to formulating the net survival function are:  

 

(i) independent risks and  
(ii) elimination of causes other than a cause, say j, is just by letting the 

failure rate of  the eliminated causes equal zero without changing the 

failure rate of cause j, which means equal hazard of the crude and 
the net. (Noninformative eliminated risks).  

 

Assumption (ii) means subjects survive from eliminated causes do 
have the same failure risks as the general population; they do not provide 

any information to the net survival time of interest. Therefore, it is called 

noninformative eliminated risks.  

 
On the nonidentifiability issues, one of the perspectives taken in 

literatures is to focus only on observable quantities (modern competing risks 

analysis). Very few literatures are found on the nonparametric estimation of 
net survival function (classical competing risks problem) especially after the 

1990s.  

 
 

A modern framework is based on cause-specific hazard function and 

cumulative incident function (Prentice et al. (1978); Kalbfleisch and Prentice 

(2002)). Nevertheless, the study of the non-observable quantity of the net 
survival function is important since it is a significant quantity for actuarial, 

demography sciences, medical research or engineering study (Hoogaard 

(2000); Mathew (2002); Nelson  (2003); Tsiatis (2005)). 
 

 



Fang Yen Yen, Noorani Ahmad & Suraiya Kassim
 

 

128 Malaysian Journal of Mathematical Sciences 
 

Competing risks that are to be eliminated are treated as a random 
censoring in survival analysis (Klein and Moeschberger, 2003). With the 

assumptions (i) and (ii), the KME to estimate the net survival function 

assumed those eliminated risks as noninformative or random censoring 
(Kaplan and Meier (1958)). Chiang (1968)’s proportional hazard assumption 

also involves the basic assumption of independent risks and noninformative 

eliminated risk in estimating the complement of the net survival function. In 
the Markov formulation for the net survival probability, the underlying 

assumption used is the same as the two assumptions above (Aalen (1978)). 

However, in most practical problems, the two assumptions might be biased, 

especially assumption (ii).  It has been argued that even in an independent 
process, the elimination of causes of failure might change the crude hazard 

rate in several ways, i.e. the crude hazard may not equal to the net hazard 

(Gail (1975); Prentice et al. (1978); Elandt-Johnson and Johnson (1980); 
Kalbfleisch and Prentice (2002); Lawless (2003)). It is therefore important to 

consider the net probability that does not need the noninformative 

assumption and allows for the presence of informative eliminated risks in 

which equal hazard assumption is not assumed. 

 
In this paper, we show how the traditional LFT approach with KME 

is used in estimating the net survival probability when only a cause is acting. 
Due to the argument that eliminated causes do provide some information to 

the net survival to allow unequal hazard, we propose a nonparametric 

multistate approach to estimating the net survival probability when 
informative eliminated risks is present. We extend the idea from Islam 

(1994) into a new result within a competing risks framework and show how 

informative risks can be incorporated into the procedure. The results show a 

change of crude hazard after the elimination of causes of death under 
informative risks, even when the risks react independently.  

 

 

THE LATENT FAILURE TIME APPROACH 

This approach is the traditional approach to the formulation of 

competing risks problem. Suppose each individual and subject from a 
homogenous population is exposed to three potential risks of death, 

1,2,3j =  with corresponding latent times 
1 2,T T  and 

3.T  We define a time 

random variable 
1 2 3( , , )T T T T=  as the latent death (failure) time that could 

happen to any individual under study. However, in competing risks analysis, 

only at most one cause of death would happen to an individual throughout 
the study. Thus, only the minimum time to death among the latent death time 
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T  is observable within each individual, and it is defined as 

{ }1 2 3min , , .T T T T=   

 

Define the multivariate lifetime distribution or the joint distribution 

of T , by the joint survivor function as 
 

1,2,3 1 2 3 1 1 2 2 3 3( , , ) ( , , ).S x x x P T x T x T x= ≥ ≥ ≥  

 

The overall survivor function is defined as 
 

1,2,3( ) ( ) ( , , )TS x P T x S x x x= ≥ =  

 

and the corresponding overall hazard function is 
 

( ) log ( ) .T Tx d S x dxλ = −  

 

We can identify the cause-specific hazard function, CSH (crude hazard) as 
 

1 2 31,2,3 1 2 3
( ) log ( , , ) , 1,2,3

j j x x x x
x S x x x dx jλ δ = = == − =   (1) 

 

the instantaneous rate of failure from cause j, when all three causes are 

operating simultaneously in the population. For simultaneous risks, we have 

 

( ) ( ), 1,2,3.
T j

x x jλ λ= =∑  

 
All functions in terms of CSH, (1) are estimable, other than that, they are 

inestimable without further assumptions (nonidentifiable) based on 

competing risks data (Gail (1975); Prentice et. al. (1978)).  
 

Let the nonidentifiable marginal distribution of T  with marginal 

survival function for  , 1, 2,3
j

T j =  be defined as  

 

( ) P( ) (0, ,0), 1,2,3j j j j jS x T x S x j= ≥ = =                 (2) 

 
and the corresponding marginal hazard be 

 

( ) log ( ) , 1,2,3.j jh x d S x dx j= − =  
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To overcome the nonidentifiability problem in competing risks analysis, 

suppose that times to failure 
1 2,T T  and 

3.T  are independent. The joint 

survival function then becomes 

 

1,2,3 1 2 3 1 1 2 2 3 3 1 1 2 2 3 3( , , )  ( ) ( ) ( ) ( ) ( ) ( ).S x x x P T x P T x P T x S x S x S x= ≥ ≥ ≥ =  

 

It can be easily shown that 

 

( ) ( )     for 1,2,3j jx h x jλ = =     (3) 

 

Equation (3) allows for an indirect estimation of the non-observable 

probability of the marginal survival function.  

 
The marginal survival function (2), often referred to as the net 

survival function, is of interest.  In a competing risks setup, the net survival 

function involves the hypothetical situation that only risk j react to the 
population with all other risks being eliminated. The basic assumption is that 

the effect of eliminating causes is just letting the corresponding arguments in 

1,2,3 1 2 3( , , )S x x x to be nullified, with no effect on 1,2,3 1 2 3( , , )S x x x (Chiang 

(1968)). It is equivalent to assuming that the elimination of causes only let 
the hazard of eliminated causes to be zero and the hazard of remaining cause 

unchanged. The net survival probability for any cause ( 1,2,3)j j =  alone, 

can be formulated as 
 

0

( ) exp ( ) .
x

j j
S x u duλ= −

 
 
 
∫                  (4) 

 

This implies equal hazard rate of the crude (before elimination) 
hazard and the net (after elimination) hazard, (Crowder, 2001) where 

eliminated causes do not provide any information (noninformative risks) to 

the net survival function. If we are interested to derive the net survival 

probability of cause 1, the net survival probability is then defined as  
 

1 1,2,3 1( ) ( ,0,0) P( )S x S x T x= = ≥  

 

with corresponding hazard 1( ).xλ This implies elimination of cause 2 and 

cause 3 nullifies 2 ( )xλ  and 3 ( )xλ  without altering 1( ).xλ  However, this 

condition is a weaker assumption than the statistically independent 
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assumption since even when risks react independently, 1( )xλ
 

might be 

altered in several ways when cause 2 and cause 3 are not present.  
 

Let us define a new independent latent random variable of 
*, 1,2,3jT j =  in a new hypothetical situation when only cause 1 is present. 

The cause 1 net survival function is 
 

0

* * * *

1 1,2,3 1 1
exp ( )( ) ( ,0,0) P( ) ,

x

u duS x S x T x λ−
 

= = ≥ =  
 
∫  

 

with a new hazard that may be different from the crude hazard
1
( ),xλ  in 

which the estimation procedure by the multistate approach will be shown in 

later section. 
 

Kaplan-Meier Estimator 

The estimation of the net survival function, (Crowder (2001)) follows the 

Kaplan Meier Estimator (KME) method, a consistent estimator of the

0

exp ( )

x

j
u duλ−

 
 
 
∫  (Tsiatis (2005); Kaplan and Meier (1958)). It treats 

eliminated causes as noninformative censoring and assumes only cause j is 
present after the other causes have been eliminated. The KME of the net 

survival function follows the LFT approach; it is consistent only when the 

net hazard function is equal to the CSH function (crude hazard). The 
estimator of the net survival function of cause j is   
 

1ˆ ( ) , 1,2,3
i

ij

t x

j id nS x j
≤

−= =  ∏                   (5) 

 

where ijd
 
is the number of individuals that fail from cause j at time ,

i
t  and 

i
n is the number of individuals being at risks at the beginning of time .

i
t  

 

 

THE PROPOSED MULTISTATE APPROACH IN 

ESTIMATING THE NET SURVIVAL FUNCTION 

This section shows a multistate approach to estimating the net 

survival probability when only a cause is acting after elimination of all other 

causes, an extension from Islam (1994). For simplicity, assume there are 
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three risks, 1,2,3j =  that react simultaneously on any individual in a 

population from the beginning at time 
0
.t During each time interval before 

elimination, each individual is exposed to four possible outcomes: the 

individual is alive as a survivor, dies from cause 1, dies from cause 2 or dies 

from cause 3.  
 

 Assume a new hypothetical situation where only risk 1 is present, 

which also means competing causes other than cause 1 have been 
eliminated. After the elimination of cause 2 and cause 3, assume all 

individuals who died from both causes were saved and they are called 

hypothetic survivors. They are expected to die from cause 1 or remain alive 

in an ideal world. Therefore, there are overall six expected outcomes (six 
states) for each individual in this hypothetical situation (Figure 1): the 

individual 

 
(i) is alive as survivor,  

(ii) dies from cause 1,  

(iii) saved from eliminated cause 2 and survives (hypothetic survivor),  
(iv) saved from eliminated cause 3 and survives (hypothetic survivor),  

(v) dies from cause 1 after being a cause 2 hypothetic survivor or 

(vi) dies from cause 1 after being a cause 3 hypothetic survivor.  

 
Outcomes (i), and (ii) are observable but (iii), (iv), (v) and (vi) are 

unobservable and can only be estimated indirectly with some assumptions. 

Figure 1 shows the six possible state outcomes and their relationship.  
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1( )S dq x  

    

    

                      

                                               

                               
2 ( )S dq x                                     

                    
2 1( )S dq x  

          

  

 
3( )S dq x  

3 1( )S dq x  

 

 

 
Figure 1: The multistate (six states) relationship when only cause 1 is present. 

 

Assume 
0

0t =  and during a time interval (0, ),x  let (Figure 1):  

 

(a) 1( )S dq x
 
be the probability of dying from cause 1 in the survivor state 

(the transition probability from state 0 to state 1 at time x). 

(b) ( ), 2,3S djq x j =  be the probability of moving from the survivor state to 

cause 2 and cause 3 hypothetic survivor states respectively. 

(c) 2 1
( ) 

S d
q x and 

3 1
( )

S d
q x be defined as the inestimable probability of 

dying from cause 1 when in cause 2 and cause 3 hypothetic survivor 

states respectively. 
 

The probability of dying from cause 2 and cause 3 respectively before 

elimination is equal to the probability of being saved from eliminated cause 

2 and cause 3 respectively and is represented in (b). 
 

Let ( )SP x be the probability of surviving in the interval (0, )x  in the 

survivor state (the probability of being in state 0 at time x). Suppose that all 

individuals in state 0 are free from any cause of death at time 0, hence

(0) 1.SP =
 
From Figure 1, ( )SP x can be expressed as follows: 

 

1 2 3
( ) 1 ( ) ( ) ( )

S S d S d S d
P x q x q x q x= − − −    (6) 

State 0: 

 Survivor 

State 2: 
 Cause 2 hypothetic 

survivor 

State 1:  

Survivor death 

State 3: 

 Cause 3 hypothetic survivor 

State 4:  

Cause 2 hypothetic death 

State 5:  

Cause 3 hypothetic death 
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Let
2 ( )SP x and 

3 ( )SP x respectively be the probability of surviving in the 

interval (0, )x  when in states 2 and 3 (probability of being in state 2 and state 

3 respectively at time x). Suppose there are no individuals in state 2 and state 

3 at time 0 and hence
2 3(0) (0) 0.S SP P= =  Then

2 ( )SP x and 
3 ( )SP x can be 

expressed as:  
 

2 2 2 1
( ) ( ) ( )

S S d S d
P x q x q x= −                  (7) 

 

and  
 

3 3 3 1
( ) ( ) ( ).

S S d S d
P x q x q x= −     (8) 

 
The net survival probability after eliminating cause 2 and cause 3 during the 

interval (0, )x  is the sum of the survivor probabilities of the three survivor 

states (state 0, state 2 and state 3) as given in Equation (6), (7) and (8), i.e. 
the probability of being in all three survivor states at time x are 

 
2 3 1 2 1 3 1

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ).
S S S S d S d S d

P x P x P x P x q x q x q x= + + = − − −   (9) 

 
2 1( )S dq x

 
and 

3 1( )S dq x  are only estimable indirectly from observed data.  

 

Consider now time intervals 
1

( , )
i i

t t + of the survival time. Denote: 

 

• 2S d

iq and 
3S d

iq = the probability of transiting from state 0 to state 2 and 

state 3 respectively (after eliminating cause 1)  during the interval,  

• 2 1S d

iq = the probability of transiting from state 2 to state 4,  

• 
3 1S d

iq = the probability of transiting from state 3 to state 5, and 

• 1S d

iq = the probability of transiting from state 0 to state 1.  

 
After elimination of cause 2 and cause 3 deaths, individuals are saved from 

both causes. Assume that after the individuals enter state 2 or state 3 

respectively, both hypothetic survivors can only meet death at the next 
interval time. By definition, it is proven (Islam (1994)) that  

 
2 1 2 1 2

( ) = ( )
i

S d S d S

i i

t x

q x q P t
<

∑  and  
3 1 3 1 3

( ) = ( ).
i

S d S d S

i i

t x

q x q P t
<

∑              (10) 
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The noninformative eliminated risks assumption from the LFT 
approach implies that eliminated risks (cause 2 and cause 3) do not provide 

any information to the net survival probability and the probability of dying 

from cause 1 is the same for remaining actual survivor and both hypothetic 
survivors. However there might be a bias due to the complexity of some 

practical or real problem. By incorporating adjustment factors to estimate the 

net survival probability, we take into account the unequal probability of 
dying for actual survivor state individuals and hypothetic (cause 2 and/or 

cause 3) survivor states individuals. By assuming that they are proportional 

at each time interval, we let ai and bi be adjustment factors for the i
th
 interval, 

and we have  
 

2 1 1S d S d

i i iq a q=  and 
3 1 1

.
S d S d

i i iq b q=                (11) 

 
From equations (9), (10) and (11), we get  

 
1 1 2 1 3

( ) 1 ( ) ( ) ( ).
i i

S d S d S S d S

i i i i i i

t x t x

P x q x a q P t b q P t
< <

= − − −∑ ∑              (12) 

 

When both = 1
i

a  and 1,
i

b =  it is reduced to the noninformative assumption 

used by the KME treated eliminated causes as noninformative censoring and 
cause 1 death as the only risk, (Cornfield (1957)). If at least one of the 

adjustment factors is not equal to one ( 1
i

a ≠  and/or 1
i

b ≠ ) in at least one 

time interval, then the informative eliminated cause 2 and/or cause 3 do 

provide some information to the net survival probability. Equation (12) is an 

alternative multistate approach to replace Equation (5) of the Kaplan Meier 
method when informative eliminated risks are present. The value of the 

adjustment factors may vary in different intervals, depending on the 

researcher’s need or background information of the process under study. 
 

Estimation 

During each time interval 1( , ),
i i

t t +  an individual at the beginning of interval 

may live as a survivor, dies from cause 1, dies from cause 2 or dies from 

cause 3. The transitions of states follow a multinomial distribution. Under 
the assumption of independent risks without censoring, the general form of 

the likelihood function for a multinomial distribution is 

 

( ) ( ) ( ) ( )
1 2 3 1 2 3

1 2 3 1 2 31
S d S d S d S d S d S d

i i i i i i id d d n d d d
S d S d S d S d S d S d

i i i i i i
q q q q q qLα

− − −

− − − (13) 
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The estimator of S dj

iq is given by 

 

ˆ ,      1,2,3
S dj S dj

i i iq d n j= =                          (14) 

 

where 
S dj

id  is the observable number of individuals whose death is from 

cause j at interval 1( , ),
i i

t t +  and 
i

n
 
is the number of individuals at risk at the 

beginning of the interval. To estimate the unobservable probability,        

(Gail (1975)) we can use an indirect estimator, such as  
 

2 1 1ˆ ˆS d S d

i i iq a q=  and 
3 1 1ˆ ˆS d S d

i i iq b q=                (15) 

 
 

RESULTS AND DISCUSSION 

To illustrate the proposed multistate approach, we use a part of Hoel 
and Walburg’s data adapted from Klein and Moeschberger (2003). The data 

is a result from an experiment on the study of the effects of radiation on life 

lengths of mice with three causes of death: thymic lymphoma (cause 1), 
reticulum cell sarcoma (cause 2), or other causes (cause 3). There is no 

censoring because the mice all died by the end of the experiment.  Suppose 

that we are interested in studying the survival probability of mice when only 
cause 1 is present, where we examine the impact on the survival rate of mice 

if we could eliminate the death due to cause 2 and cause 3.  

 

By using the KME method (Equations 4 and 5) and the multistate 
method by assuming noninformative risks (Equations 12, 13, 14 and 15), we 

display the results of estimating the net survival probability if only risk 1 is 

acting and its corresponding net hazard in Table 1. The results show no 
difference in the net survival probability and its corresponding net hazard by 

the two different approaches when adjustment factors, 1
i i

a b= =  

(noninformative risks) is assumed. The crude hazard simply equals the net 

hazard under the two methods.  

 
 

 

 
 

 

 

 
 



A Multistate Approach to Estimating the Net Survival Function in the Presence of Competing Risks 

 

 Malaysian Journal of Mathematical Sciences 137 

 

TABLE 1: The net survival probabilities and corresponding hazards by the KME method and 
the multistate approach in three different survivor states. 

 

Interval 

KME with LFT Approach Multistate Approach with 1
i i

a b= =  

ɵ
1( )S x  ɵ ɵ

1 1( ) ( )x h xλ =  � ( )
S

P x  �
2

( )
S

P x  �
3

( )
S

P x  
�( )P x  ɵ

1( )h x  

1 0.93671 0.06329 0.92406 0.00000 0.01266 0.93671 0.06329 

2 0.79556 0.15068 0.75949 0.00000 0.03607 0.79556 0.15068 

3 0.76904 0.03333 0.72152 0.00000 0.04752 0.76904 0.03333 

4 0.71507 0.07018 0.64557 0.01266 0.05685 0.71507 0.07018 

5 0.68703 0.03922 0.59494 0.02482 0.06728 0.68703 0.03922 

6 0.67241 0.02128 0.37975 0.11290 0.17977 0.67241 0.02128 

7 0.62759 0.06667 0.22785 0.15601 0.24373 0.62759 0.06667 

8 0.62759 0.00000 0.07595 0.16886 0.38297 0.62759 0.00000 

9 0.62759 0.00000 0.02532 0.18132 0.42095 0.62759 0.00000 

 

 

Table 2 shows the values of the net survival probability and the net 

hazard by using two different assumptions in the multistate approach when 

known informative eliminated risks are present by assuming 0.5
i i

a b= =  and 

1.5
i i

a b= = .  By the multistate method, the crude hazard is not simply equal 

to the net hazard when 1
i

a ≠   and 1.
i

b ≠  As shown in Table 2, when 
i

a  and 

i
b  are smaller than 1, the net hazard by the multistate approach is less than 

or equal to the hazards obtained by the LFT approach. But if 
i

a  and 
i

b  are 

greater than 1, the net hazard by the multistate approach is bigger or equal 
compared to the LFT approach. Moreover, the table shows that the net 

survival probability by the multistate approach is different from the KME 

method which applies the LFT approach. This result allows accessing the 
impact of cause 1 on the survival and failure probability when different 

informative rates are present.  
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TABLE 2: Estimation of the net survival probabilities based on the assumptions 0.5
i i

a b= =  

and 1.5
i i

a b= =   with its corresponding hazards by the multistate approach. 

 
 

Interval 

Multistate Approach 
KME with LFT 

approach 
Assumed 

0.5
i i

a b= =  

Assumed 

1.5
i i

a b= =  

ɵ
1( )S x  ɵ

1( )h x  
�( )P x  ɵ

1( )h x  �( )P x  ɵ
1( )h x  

1 0.93671 0.06329 0.93671 0.06329 0.93671 0.06329 

2 0.79651 0.15068 0.79461 0.15068 0.79556 0.15068 

3 0.77058 0.03329 0.76754 0.03337 0.76904 0.03333 

4 0.71823 0.07004 0.71206 0.07031 0.71507 0.07018 

5 0.69198 0.03904 0.68432 0.03938 0.68703 0.03922 

6 0.67884 0.02112 0.67047 0.02136 0.67241 0.02128 

7 0.65118 0.06604 0.63918 0.06686 0.62759 0.06667 

8 0.65118 0.00000 0.63918 0.00000 0.62759 0.00000 

9 0.65118 0.00000 0.63918 0.00000 0.62759 0.00000 

 
 
 

CONCLUSION 

The equal hazard assumption in the traditional LFT approach and 

KME method in estimating the net survival function might not be true in 
many practical problems, when informative risks (eliminated) are present. 

Without the equal hazard assumption, we have proposed a more flexible 

multistate approach in estimating the net survival probability when 

informative risks (eliminated) are present by incorporating adjustment 
factors into the procedure. When noninformative risks are assumed, the 

proposed procedure is reduced to the traditional approach. The results shows 

unequal hazard before and after elimination by different assumptions on the 
adjustment factors (contradictory to the LFT approach of equal hazard). In 

addition, the proposed multistate approach is sensitive to the changes of 

hazard when informative risk is present, even under independent risks 
assumption.  
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The procedure can be extended to studies that involve more than 
three risks, consideration of censoring, a non-complete elimination process, 

partial crude probability or consideration of more complex multistate 

elimination. Moreover, it is easy to extend the proposed method to deal with 
a situation where different types of informative eliminated risks are present 

in one sample. The adjustment factors is allowed to vary in different 

intervals, thus the impact of eliminated risks with different informative rate 
can be studied in detail by considering each interval situation, allowing 

results that cannot be given by the traditional approach. As a conclusion, the 

proposed multistate approach without the equal hazard assumption is a 

simple procedure to be used as an alternative approach to the traditional 
approach, especially when some known informative eliminated risks are 

provided. 
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